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ABSTRACT 
In this paper we offer a relatively comprehensive introduction to estimation issues associated with time-series—
cross-section analysis in criminology.  We divide the estimation issues into two categories:  (1) those that have 
received a fair amount of attention in the literature and (2) those that have not.  Issues that have received attention 
are heterogeneity, autocorrelation, panel heteroskedasticity, nonstationarity, and unit-specific trends.  Issues that 
have not received much attention are spatial autocorrelation and contemporaneous correlation.  Using county-level 
data from the state of California, focusing in particular on the crimes of assault, robbery, and burglary, we control 
for the first set of estimation problems, then we explore the effects of the latter set.  We conclude that 
contemporaneous correlation deserves more attention than spatial autocorrelation.  Also, we found that assault is 
more sensitive to the estimation issues raised than either robbery or burglary. 
 
KEYWORDS: time -series--cross-section data; heterogeneity; autocorrelation; panel heteroskedasticity; 
nonstationarity. 
 

Several criminologists have moved beyond the 
limits of the cross-sectional research design.  
Specifically, the time dimension has been incorporated 
into many cross-sectional research designs, resulting in 
what is frequently termed “time-series—cross-section” 
(TSCS) analysis.  Quantitative research that tacks on 
time to the traditional cross-sectional research design is 
besieged by problems of estimation.  Most introductory 
econometrics texts cover these problems, and the 
techniques for rectifying them are both accessible and 
available.  Unfortunately, it appears to us that the 
criminological literature lacks an introduction to the 
many problems inherent in time-series—cross-section 
analysis.  More importantly, many criminologists have 
still ignored some of these estimation issues. 
 We intend to provide a relatively comprehensive 
introduction to the various estimation problems 
associated with time -series—cross-section analysis.  We 
will review many of the issues already familiar in 
criminological research; however, we will also 
introduce two additional estimation issues that have 
received little attention in the criminological literature.  
In addition, we will provide an overview of various 
methods for dealing with these problems.  Finally, we 
will estimate a series of “generic” models of crime, 
focusing on the consequences of ignoring the estimation 
problems introduced throughout the article.   

 Many of the issues discussed in this paper apply 
only to macro-level criminological research.  Indeed, 
the models we estimate at the end of the paper are 
macro-level in nature.  Nevertheless, some of the 
problems discussed here are relevant to all TSCS 
designs, and should therefore be of interest to 
criminologists studying micro -level dynamics.   
 To avoid becoming too “methodological,” we will 
use criminological examples throughout this paper in 
order to give it a “real world” focus.  We will explain 
the topics in conceptual terms and conclude by 
discussing the importance of them for macro-level 
criminological research that consists of repeated 
observations on the same units of analysis. 
 
TIME-SERIES —CROSS-SECTION MODELS 

TSCS data combine observations both cross-
sectionally and over time—an approach that increases 
sample size over either cross-section or time-series data.  
Many of the same statistical techniques are used to 
model both TSCS and panel data.  As such, the 
techniques we explore in this article should be of 
interest to all researchers whose statistical models 
contain observations on the same units over time.   
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Advantages of TSCS Data 
 Panel data and TSCS data share many of the same 
advantages —only the statistical techniques differ.  
Panel and TSCS data models have long been considered 
one of the best designs for the study of causation next to 
a purely random experiment.  Campbell and Stanley 
(1967), for example, refer to panel/TSCS models as 
“excellent quasi-experimental design[s], perhaps the 
best of the more feasible designs.”  Lempert (1966) 
stated that panel/TSCS designs are research designs 
“par excellence.”  Still other researchers have argued 
that panel/TSCS techniques are well-suited to causal 
analysis (e.g., Stimson). 
 In addition to their potential for detecting causal 
relationships, panel/TSCS techniques offer a number of 
distinct advantages over cross-sectional estimators.  As 
Hsiao (1986) points out, “panel data provides major 
benefits for...estimation in at least three areas:  (1) 
identification of...models and discriminating between 
competing...hypotheses, (2) eliminating or reducing 
estimation bias, and (3) reducing problems of data 
multicollinearity.”  Panel/TSCS data also gives the 
researcher a large number of observations (one unit can 
actually have several observations), thereby increasing 
degrees of freedom.    
 A final advantage of panel/TSCS techniques, more 
relevant in the present context, is:  “By utilizing 
information on both the intertemporal dynamics and the 
individuality of the entities being investigated, one is 
better able to control in a more natural way for the 
effects of missing or unobserved variables” (Hsiao, 
1986).  Accordingly, panel/TSCS data are well-suited to 
the detection of population heterogeneity (time-stable 
characteristics of the units of analysis, such as 
conservatism in Orange County, California) because 
such variables—to the extent they exist—are typically 
unmeasurable and unobservable. 
 
The Foundation of TSCS Estimation 
 The TSCS models we focus on are based on the 
following generic form: 
 
 yit = xitß + eit;   i = 1,…, N;   t = 1,…, T   (1)  
                                  
where xit is a K vector of exogenous variables and 
observations are indexed by both unit (i) and time (t).1  
Note that in equation (1) the error structure of eit is not 
specified; it is viewed as independent for all i and t.     

Equation (1) perfectly resembles a typical OLS 
regression model, except the subscripts for unit and time 
are incorporated into the model.  This is an important 
point because, subscripts aside, equation (1) implies that 
time is irrelevant.  The reason a time variable (such as a 
lagged dependent variable) is not included in equation 
(1) is because time may have no bearing on the 
dependent variable.  Researchers must first test whether 

it is an important factor that needs to be controlled.  We 
now turn our attention to some of the estimation issues 
posed by equation (1). 
 
ESTIMATION ISSUES  
 A pooled analysis of the data based on Equation (1) 
would be seriously flawed, in part because such analysis 
assumes that repeated observations on each unit are 
independent.  Thus, several estimation issues need to be 
considered in the TSCS context.  Some of these are 
familiar to macro-level criminologists, but others have 
been effectively ignored.  We begin by focusing on 
fami liar estimation issues, including techniques for 
dealing with them.  We then move into less familiar 
territory and consider additional TSCS estimation issues 
that have received little attention in the criminological 
literature.    
 
Familiar Issues in Macro-Level Criminological 
Research  
Heterogeneity.  Heterogeneity refers to unobserved 
variables that remain constant over time.2 It is not 
always the case that heterogeneity needs to be modeled, 
but when it is present, specific techniques need to be 
followed in order to control for it.  Heterogeneity is 
typically detected by comparing the F statistics resulting 
from equation (1) to the results from an equation of the 
following more specific form: 

 
 yit = xitß + vi + ?t + eit;   i = 1,…, N;   t = 1,…, T   (2) 
 
Equation (2) differs from equation (1) by the addition of 
vectors of dummy variables, vi and ?t, marking unit and 
time, respectively.  Equation (2) can be described as a 
two-way fixed-effects model, which controls for 
unmeasured time -invariant differences between units 
and unit-invariant differences between time periods.   

The addition of unit-specific dummy variables 
acknowledges that there may be inherent features of 
individual units (e.g., counties) that affect the outcome 
of interest that are not adequately captured by any of the 
regressors included in the model (i.e., heterogeneity).  
For example, Cherry (1999; see also Cornwell and 
Trumbull 1994) has pointed out that cross-jurisdictional 
variations introduce “noise” into macro-level crime 
analysis which may bias results by noting that: 

 
suppose there are two criminal justice departments.  
Department A follows strict accounting practices 
that report high percentages of crimes, while 
department B is more lenient and reports lower 
percentages.  Noting that certainty of sanctions is 
typically measured by the clearance rate, this 
disparity causes a problem when the reported data 
from the two jurisdictions are analyzed (p. 754).  
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Another example of heterogeneity at the macro-level 
could be the political orientation of a specific city or 
county.  It is often the case that such characteristics as 
“conservatism” or “liberalism” remain relatively 
constant over time.  Likewise, such characteristics as 
“rural” or “urban” remain effectively constant for long 
periods of time.  This “heterogeneity” needs to be 
modeled in time-series—cross-section analysis. 

The addition of time-specific dummy variables 
acknowledges that all the units in the model could be 
subject to common events in any given year.  This time 
effect is frequently taken into account through a series 
of dummy variables for year, otherwise random year-to-
year variations could contaminate the X-Y relationship 
specified in the model.  A criminological example of 
this “time effect” could be a downturn in the economy 
in a single state.  A significant downturn would likely 
affect the whole state at the same time.  The result could 
be increased unemployment and a concomitant increase 
in crime. 
 In formal terms, the two-way fixed effects model in 
equation (2) assumes that the slope estimates for the 
variables in the model remain constant across the unit 
and time dimensions but intercepts vary by both unit 
and time.  So, instead of a single constant term, we have 
a series of dummy variables in the equation (either 
omitting one dummy that is captured by the constant or 
omitting the constant term).  Admittedly, the fixed 
effects approach to modeling heterogeneity is somewhat 
crude; it suggests that important differences between 
counties and over time can be captured by simply 
including dummy variables in the specification.  Since 
we do not know the extent of macro-level heterogeneity, 
however, and since there is no established theoretical 
basis suggesting it needs attention, we are simply 
starting “at the beginning” by exploring the influence on 
crime of macro-level heterogeneity.3   

Temporal Autocorrelation.  It is rarely the case that 
observations within TSCS data are independent along 
the time dimension.  We expect serial dependence 
(often referred to as serial autocorrelation and/or 
temporal autocorrelation).  It is not uncommon for the 
values of a particular unit from one time period to be 
associated with values for the same unit from another 
period (Hanushek and Jackson 1977; Maddala 1992).  
For example, the budgets of public agencies, such as 
police departments, are closely tied to one another over 
time.  Likewise, prison populations, while fluctuating 
greatly over the long term, tend to be closely related 
from one year to the next.   

There are several ways to test for temporal (serial) 
autocorrelation, including the calculation of the Durbin-
Watson d statistic from the residuals generated by OLS 
regression models.  Importantly, this test for serial 
autocorrelation is for strictly exogenous regressors only; 
additional tests are required if the model contains a 

lagged dependent variable.  Another easy method for 
detecting serially correlated is the TSCS analog of the 
standard Lagrange multiplier test.  This is accomplished 
by estimating an OLS regression equation and then 
regressing the residuals on all of the independent 
variables and the lagged residual.  If the coefficient on 
the lagged residual is significant, then the null 
hypothesis of independent errors can be rejected.  These 
steps are taken to detect a first-order autoregressive 
process, yet the test can be refined to detect higher-order 
serial autocorrelation by the addition of multiple lags for 
the captured OLS residuals (see Beck and Katz 1996).   

Numerous methods are available for dealing with 
serial autocorrelation.  One well-known approach to 
dealing with serial autocorrelation with traditional time -
series that follows one unit over time is feasible 
generalized least squares (FGLS).  This involves 
running the OLS regression of Y on all X variables and 
obtaining the OLS residuals.  Then run the regression of 
the OLS residuals on the lagged dependent variable (for 
the AR[1] model) for all t=2,….,n and obtain the 
coefficient on the lagged dependent variable, rho.  
Finally, subtract rho from 1 for all X and Y variables 
and conclude by applying OLS to that equation.  There 
are several names for FGLS estimation of the AR(1) 
model.  These come from the different methods of 
estimating rho.  Cochrane-Orcutt (CO) estimation omits 
the first observation and uses estimated rho from the 
regression of the OLS residuals on the lagged dependent 
variable.  In contrast, Prais -Winsten (PW) estimation 
uses the first observation instead of dropping it.   

Another method to correct for serial autocorrelation, 
this one specifically geared toward dealing with 
multiple units over time, is a simple extension of the 
“basic” FGLS approach.  The so-called “Park’s method” 
(Beck and Katz 1995) estimates a specific 
autocorrelation coefficient for each unit of analysis.  In 
other words, this method assumes that autocorrelation 
differs by unit whereas the basic FGLS approach 
assumes that a single autocorrelation coefficient applies 
to all units.  This latter FGLS approach has been 
criticized by Beck and Katz (1995, 1996) because it 
assumes that the errors for all units follow a unit-
specific autoregressive process.  They argue, instead, 
that it is better to assume a common autoregressive 
process (Beck and Katz 1996).  In their words, “TSCS 
analysts start with the assumption that the parameters of 
interest, ß, do not vary by unit; this ‘pooling’ is at the 
heart of TSCS analysis.  Why then should the ‘nuisance’ 
serial correlation parameters vary by unit?”  They 
showed through a series of Monte Carlo experiments 
that the assumption of a common serial correlation 
process leads to superior estimates of ß.   

Beck (forthcoming) actually criticizes both methods 
of FGLS because they “treat the interesting properties of 
TSCS data [e.g., serial autocorrelation] as nuisances 
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which cause estimation difficulties.  In place of the 
FGLS approach they propose simply including one one-
period lagged dependent variable on the right-hand side 
of the equation for two reasons.  First, a lagged 
dependent variable allows researchers to consider issues 
of unit root TSCS data.  TSCS models have a unit root 
when the estimated value of the coefficient on the 
lagged dependent variable is one.  We discuss this 
problem further below.  Second, lagged dependent 
variables can serve as proxies for other variables not 
included in the model (see Wooldridge 2000).  We 
adopt the lagged dependent variable approach below.  
 Panel Heteroskedasticity.  A unique form a 
heteroskedasticity frequently presents itself in the 
analysis of TSCS data.  Panel heteroskedasticity4 can 
affect whole units at a time since error variances for a 
given unit may display time dependence.  Non-constant 
variance is a likely violation of Gauss-Markov 
assumptions in TSCS data.  To use a criminological 
example, variance estimates for rural county crime rates 
are likely to differ significantly from those of urban 
counties, which, in turn, are likely to contribute to 
nonconstant error variances.  Similarly, if police 
departments are the units of analysis, then having large 
and small agencies in the same sample could be 
problematic. 

There are several acceptable methods available to 
detect heteroskedasticity, including the use of auxiliary 
regressions (Franzese 2002) and the Breusch-Pagan test.  
Methods for dealing with panel heteroskedasticity, 
however, are less clear with TSCS data (see Beck and 
Katz 1995, 1996 for a review; also see Wooldridge 
2000).  The most popular (and most easily computed) 
method is to weight the data by the square root of the 
variable thought to be responsible for 
heteroskedasticity.  In many macro-level criminological 
models, this variable is usually a measure of population 
size (see, e.g., Chamlin and Cochran 1997; Marvell and 
Moody 2001; Pratt and Godsey, forthcoming; Sampson 
and Groves 1989; Shepherd, forthcoming).  
 Another method of dealing with panel 
heteroskedasticity is to adjust the standard errors as 
opposed to weighting the data.  Beck and Katz (1995, 
1996) call this approach regression with “panel 
corrected standard errors” (PCSEs).  PCSEs inflate the 
standard errors in light of the panel structure of the data.  
The PCSE approach leaves the data in their original 
form and so is desirable for those who do not wish to 
engage in empirical weighting of the data.  Some 
regression routines in population statistics packages 
(e.g., STATA) allow researchers to weight the data by 
the square root of a specified variable as well as opt for 
the PCSE approach.  This means that and 
heteroskedasticity remaining after weighting can be 
“controlled” for with panel corrected standard errors.  

Unit-Specific Trends.  Assuming that all the units in 
a TSCS model follow the same pattern can be 
problematic.  Indeed, certain units may depart from the 
norm, requiring the inclusion of unit-specific trend 
variables to control for fluctuations in a unit (e.g., a 
county) that depart from the trends captured by year 
dummies as in equation (2).  Unit -specific trend 
variables are therefore proxies for factors that make 
crime rates (or other dependent variables) vary more or 
less than the overall trend.  There is no easy way (that 
we know of) to determine whether unit-specific trends 
are necessary.5  Such variables are nevertheless worth 
considering because of the possibility of units that do 
not “behave” like the rest.  Usually the unit-specific 
time trend is assumed to be linear and is coded from, 
say, 1 to t (Quadratic and other trends can be included 
as well).  

The need for modeling unit specific trends can be 
made clearer with a hypothetical example.  Assume, for 
example, that a single county elects a democratic 
sheriff.  The sheriff advocates reduced enforcement of 
drug laws and an increase in attention to treatment for 
drug users.  Assume further that the voters approve of 
this strategy (however unlikely) and the result is a 
steady decrease in property crime during the period the 
sheriff remains in office.  This effect would probably 
not carry over to other counties in the same state, which 
suggests that it needs to be modeled.  Unit specific 
trends accomplish this. 

Nonstationarity.  A fundamental assumption 
underlying the analysis of TSCS data is that they are 
stationary.  In formal terms, data are stationary if their 
means, variances, and autocovariances (at various lags) 
remain across all time points.  Stationarity is often 
detected through a Dickey-Fuller unit root test.  If a 
time series has a unit root, it is deemed nonstationary.  
One way to perform this test is to regress the dependent 
variable in an equation on the one-period lagged 
dependent variable.  If the coefficient on the lagged 
dependent variable, ?, equals one, then we face what is 
known as a unit root problem (i.e., a nonstationarity 
situation).  Another method for detecting nonstationarity 
examines whether the coefficient on the lagged 
dependent variable, d, in an equation with a first-
differenced dependent variable, equals zero.       
 Unit root tests can (and usually should) also be used 
in models with more complicated dynamics.  For 
example, an augmented Dickey-Fuller test can be 
performed by regressing the first-differenced dependent 
variable on the one-period lag of the dependent variable 
and on one or more lagged first-differenced dependent 
variables (i.e., lagged changes).  The inclusion of the 
lagged changes is intended to clean up any serial 
correlation in the first-differenced dependent variable.  
Stated in more concrete terms, for this Dickey-Fuller 
test statistic to be valid, dynamics must be completely 
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modeled.  One way to determine the proper lag length is 
to start with several, then drop lags without significant 
coefficients, using standard t-tests (see, e.g., Enders 
1995). 

One of the more common methods for dealing with 
nonstationarity is, as with autocorrelation, to first-
difference the data.  Since many criminological times 
series appear to be stationary based on unit-root tests, 
however, this transformation is rarely undertaken (see, 
e.g., Marvell and Moody 1996, 1995, 2001).   
 Unit root tests such as those like the augmented 
Dickey-Fuller test have low power (Enders 1995).  
Since the null hypothesis in a unit root test is that of a 
unit root, this means that Dickey-Fuller statistics cause 
researchers to conclude, more often than they should, 
that data contain a unit root.   
 Stationarity is not easily understood with an 
example.  The reason for this is that it is a “statistical” 
factor that needs to be controlled for, not a conceptual 
problem.  Nevertheless, a hypothetical scenario may 
help explain this phenomenon.  It is well-known, for 
instance, that crime rates fluctuate over time.  That is, 
they trend upward and downward over the long haul.  
Time series analysis assumes that this is not the case, 
which means that the data need to be forcibly made 
stationary.   
 
Issues Frequently Ignored in Macro-Level 
Criminological Research6 

Spatial Autocorrelation.  Because TSCS data contain 
observations on several cross-sections, or units, spatial 
autocorrelation is frequently a problem—especially 
when the units are contiguous—(Mencken and Barnett 
1999).  When the units of analysis are geographic 
aggregates the potential for error correlation between 
units increases.  For example, when two counties border 
one another, both may face many of the same problems.  
Thus, the second requirement before establishing an 
adequate model is to account for spatial autocorrelation.  
This is a critical issue in our analysis because we focus 
on all counties in a particular state, each of which is 
contiguous to several others. 

A criminological example of spatial autocorrelation 
can be easily conceived of.  If one city experiences a 
sudden and dramatic increase in homicide, it is not 
unrealistic to assume that the problem could be pushed 
into surrounding cities.  Alternative, regional factors can 
lead to spatial autocorrelation.  For example, cities in 
Southern California are markedly different in size, 
weather, and other factors than cities in Central and 
Northern California.  It is likely that there is a degree of 
correlation between Southern California cities that 
would not carry over to cities to the North. 

Spatial autocorrelation is the result of the geographic 
clustering of values across observations—more than 
would be expected in a random distribution of values 

across geographical units (e.g., Anselin 1998).  Spatial 
autocorrelation exists when the value for one variable X 
at location j is dependent (or associated) with the value 
of variable X at location i.  Spatial autocorrelation is 
generally not a problem in macro-level studies of crime 
when units, such as cities or counties, are randomly 
sampled.  Since many researchers analyze contiguous 
units, however, the (potential) problem of spatial 
autocorrelation must often be addressed.   
 When spatial autocorrelation is not addressed, it can 
create deflated standard error terms (i.e., exaggerated 
efficiency) and therefore artificially increases the 
chances of finding statistically significant relationships.  
Several techniques are available for the detection of 
spatial autocorrelation (Mencken and Barnett 1999).  
Moran’s  I, perhaps the best-known technique, is 
interpreted like a correlation coefficient; the greater the 
I, the greater the autocorrelation.  The I statistic is 
calculated as follows: 
 
   I = S i S j wij(xi-µ)(xj-µ) / S i(xi-µ)2                      (3) 
 

where µ is the mean of the x variable and wij are the 
elements of the spatial weights matrix.7   
 Getis and Ord (1992) point out several limitations 
associated with Moran’s I.  First, Moran’s I is  a global 
spatial autocorrelation statistic which means it may be 
unable to detect localized pockets of spatial 
autocorrelation.  In addition, Moran’s I is calculated 
based on the covariation between unit values on a 
specific variable.  This means that a positive and 
significant Moran’s I can be explained by a clustering of 
higher values in surrounding units, lower values in 
surrounding units, or both high and low clustering 
within a specified distance.  An alternative to Moran’s I 
proposed by Getis and Ord  (1992) is known as the G 
statistic.  It is calculated as follows: 
 
   G = S i S j wij(d)xi xj / Si(xi-µ)2                                   (4) 
 
The G statistic differs from Moran’s I by the inclusion 
of a distance band, d, an area of geographic interest in 
which spatial autocorrelation may be problematic.  The 
spatial weights matrix, wij, is a binary matrix of ones 
and zeros, where ones indicate units within the distance 
band, d.   
 Even Getis and Ord (1992) concede that the G statistic 
has its faults in that it may fail to identify localized 
clusters of positive and negative spatial autocorrelation.  
They therefore propose the Gi statistic  

 
  Gi = S j wij(d)xj / S j xj                                  (5) 
 

where wij is again a spatial weights matrix, same as 
before, but with ones for all unit links within  the area 
defined by distance d for a given j.   
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 Two relatively simple methods exist for dealing with 
spatial autocorrelation, the latter of which is adopted in 
this paper.  The first is known as a “spatial disturbances 
model” (Doreian 1980a, 1980b).  In this model the 
effects of spatial autocorrelation among disturbances are 
incorporated into the mo del in much the same way that 
a first-order autoregressive model is estimated.  In place 
of the one-period lagged disturbances, however, one 
multiplies a binary N x N spatial weights matrix (where 
the weights equal one if area j shares a common 
boundary with area I, zero otherwise) by the 
disturbances.  The weight matrix is intended to 
represent the pattern of interaction between the 
disturbances at location i and j.  This method is 
computationally labor intensive in the TSCS context 
because of the element of time.  For example, 40 units 
observed at 10 time periods requires a spatial weights 
matrix of size 400 x 400.  Since the researcher must 
construct the spatial weights matrix, and because we are 
not aware of statistical packages that estimate spatial 
dis turbance models for TSCS data, we select the 
following approach.   

A “spatial effects model” is where the effects of 
autocorrelation within the dependent  variable are 
incorporated.  Instead of multiplying the disturbances by 
a spatial weights matrix, values of the dependent 
variable on all contiguous units are averaged and 
entered into the model as another variable.  Researchers 
can substitute such a variable with lagged mean values 
to explore the possibility of delayed spatial 
autocorrelation.  Lagged variables used in this fashion 
result in what is known as a “spatial lag model.”  The 
choice between both methods is a substantive rather 
than empirical one.  The researcher must decide whether 
the dependent variable is spatially autocorrelated or 
whether the errors are.  Accepting the view that the 
dependent variable is spatially autocorrelated is akin to 
suggesting that there is no spatial relationship between 
the independent variables.  By contrast, spatial 
autocorrelation in the errors suggests that much more 
than the dependent variable is correlated across spatial 
units.   
Contemporaneous Correlation.  Time-series—cross-
section data are often plagued by the problem of 
contemporaneous correlation.  That is, the observations 
from certain units may be correlated with the 
observations from other units during the same time 
period.  As indicated in the heterogeneity section above, 
time-specific dummy variables are often incorporated 
into TSCS models in order to control for events that 
affect all units of analysis  in a given year.  
Contemporaneous correlation is a markedly different 
problem. 

Contemporaneous correlation refers the error 
correlation between two or more units.  In other words, 
contemporaneously correlated errors exist if there are 

unobserved features of some units that are related to the 
unobserved features of other units.  Or, as Beck and 
Katz (1995) observe, “we might expect TSCS errors to 
be contemporaneously correlated in that large errors for 
unit i at time t will often be associated with large errors 
for unit j at time t.”  Furthermore, “these 
contemporaneous correlations may differ by unit” (p. 
636).  For example, the errors in two units may be 
linked together but remain independent of errors in the 
remaining units.     

Contemporaneous correlation can be understood by 
referring back to the concept of time-specific 
heterogeneity.  As we already saw, it is possible that all 
counties in a given state can be affected by the same 
event at the same time.  Contemporaneous correlation is 
basically the same thing, but with the possibility that 
less than all counties are affected.  If, for example, there 
was a sudden and unexpected cold snap, then 
agricultural counties could see destruction of crops, 
increased unemployment, and crime, but this effect 
would probably not manifest itself in larger, urban 
counties.  Alternatively, contemporaneous correlation 
can refer to differing levels of correlation between all 
units of analysis during the same time period (as 
opposed to the same level of correlation that dummy 
variables for time assume). 

Breusch and Pagan (1980) proposed a test for 
detecting contemporaneous correlation in regression 
residuals —a Lagrange multiplier (LM) of the following 
form: 

                                                                                     (6) 
where r2

ij is the ijth residual correlation coefficient.  It is 
a test of the null hypothesis that the off-diagonal 
elements of the relevant correlation matrix are zero.   

One approach to dealing with contemporaneous 
correlation is to treat it as a nuisance and correct for it 
using Feasible Generalized Least Squares (FGLS).  
Beck and Katz (1996) call this approach “old fashioned” 
because instead of regarding contemporaneous 
correlation as a substantively important characteristic to 
be modeled, it is more or less ignored.  In short, Beck 
and Katz (1995, pp. 644-45) have pointed out that “the 
downward bias in standard errors makes the [FGLS] 
technique unusable unless there are substantially more 
time points (T) than there are cross-sectional units (N).”  
The FGLS approach, then, would be inappropriate to 
control for contemporaneous correlation. 
 In place of FGLS Beck and Katz (1995) propose that 
analysts deal with the complicated TSCS error process 
by using OLS regression with panel corrected standard 
errors (PCSE).  Their Monte Carlo simulations showed 
that PCSEs are accurate in the presence of 
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contemporaneous correlation (as well as panel 
heteroskedasticity).  Beck and Katz (1995, 1996) go on 
to note that PCSEs can only be estimated after first 
modeling dynamic processes.  Thus, they propose that 
the following model first be estimated: 
 
   yit = dyi,t -1 + xitß + eit      (7) 
 

PCSEs are calculated using the OLS residuals from 
equation (3).8  The Monte Carlo simulations reported by 
Beck and Katz (1995, 1996) showed that panel-
corrected standard errors are accurate in the presence of 
contemporaneously correlated errors and/or panel 
heteroskedastic errors.  In other words, if the errors are 
serially independent , PCSEs provide good estimates of 
equation (3).  A key component of equation (3) is the 
lagged dependent variable.  Beck and Katz (1995, 1996) 
argue that a “modern” approach is to model the 
dynamics as part of the specification, and the simplest 
way to do this is to include a lagged dependent variable 
in the specification.9   
  
DATA, COVARIATES, AND MODELS 
 We now call attention to the importance of the 
foregoing estimation issues by estimating a series of 
“generic” macro-level models of crime with TSCS data, 
using aggravated assault, robbery, and burglary rates as 
our dependent variables.  The models are “generic” in 
the sense that we are not testing any particular macro -
level theory of crime, but rather we are assessing the 
potential impacts of these estimation issues on a variety 
of empirical relationships that are commonly tested by 
criminologists.   
 
The Data 
 We used county-level data supplied by the 
California State Attorney General’s Office from 1989 to 
2000 (58 counties yielding 696 usable observations).  
Although our results cannot be expected to generalize to 
other states, the main advantage of focusing on a 
particular state is that we were able to obtain data in 
yearly increments.  Thus, we are simply extending what 
is already a long criminological history of county-level 
studies of crime (see, e.g., Baller et al. 2001; Gillis 
1996; Guthrie 1995; Hannon and DeFronzo 1998; 
Kowalski and Duffield 1990; Kposowa and Breault 
1993; Kposowa et al. 1995; Lee 1996; Petee and 
Kowalski 1993; Phillips and Votey 1975).   
 
Dependent Variables 
 The dependent variables used in our analysis are: (1) 
the aggravated assault rate; (2) the robbery rate; and, (3) 
the burglary rate.  The rates were calculated as the 
number of each offense reported to the police divided 
by population.  The dependent variables were quite 

highly skewed; accordingly, we used the natural 
logarithm of each variable in the equations.   
 Some researchers argue that crime rates are discrete 
events and, as such, necessitate models that take into 
account the discrete data-generating process.  As 
Osgood (2000) and Osgood and Chambers (2000) note, 
however, the natural logarithm transformation is 
appropriate provided that the counties analyzed are not 
all characterized by low offense rates relative to 
population size.  That is to say, when population size 
grows smaller, the crime rate becomes less precise as 
well as skewed.  Our models include several highly 
populous counties with substantially “meaningful” 
crime rates.  As such, we believe the transformed 
dependent variable approach is perfectly acceptable 
over the models -for-discrete-outcomes approach 
advocated by some analysts (e.g., see the discussions by 
Brame et al., 1999; Osgood, 2000).  
 
Independent Variables 
 We use both social-structural and criminal justice 
system-related covariates in the analyses that follow.  
The social-structural covariates we included were:  (1) 
the high school dropout rate; (2) the welfare rate; (3) the 
unemployment rate; (4) per capita income; (5) the 
percentage of black residents; (6) the percentage of 
Hispanic residents; (7) the percentage of males between 
13 and 17; (8) the percentage of males between the ages 
of 18 and 25; and (9) the percentage of families 
claiming the homeowners exemption on their state tax 
returns, a proxy for population mobility.10  Each of these 
variables have been employed as structural covariates in 
past macro-level criminological research (see, e.g., 
Allan and Steffensmeier 1989; Bailey 1984; Cantor and 
Land 1985; Chamlin 1989; Decker and Kohfeld 1984; 
Fowles and Merva 1996; Kapuscinski et al. 1998; 
Kovandzic et al. 1998; Land et al. 1995; Osgood 2000; 
Smith and Parker 1980; Warner and Roundtree 1997; 
Williams and Flewelling 1988). 
 The criminal justice system-related covariates 
included in our models were:  (1) the probability of 
arrest, depending on which specific crime is modeled; 
(2) per capita people held in custody; and (3) per capita 
law enforcement expenditures for the entire county.  
While other criminal justice system-related covariates 
exist, each of these have been used by criminologists in 
previous research (see, e.g., Lynch et al., 1994; Mathur, 
1978; Pogue, 1975; Swimmer, 1974; see also the similar 
measures employed by Greenberg and Kessler, 1982; 
Harer and Steffensmeier, 1992; Langworthy, 1989; 
Marvell and Moody, 1996; Sampson and Cohen, 1988; 
Stack, 1984; Yu and Liska, 1993).  Several of the 
independent variables also displayed positive skew; as 
such, we took the natural log of each variable so our 
equations are to be interpreted as elasticities. 
 



 

42 

Table 1 .  Baseline models and models with a spatial autocorrelation term. 
Regressors Assault  Robbery Burglary 
 Baseline 

Model 
Spatial 
Model 

Baseline 
Model 

Spatial 
Model 

Baseline 
Model 

Spatial 
Model 

       
Lagged Dependent Variable       .173*** 

(.034) 
    .174*** 

(.034) 
-.060 
(.039) 

-.060 
(.039) 

.098* 
(.048) 

.102* 
(.048) 

       
Spatial Autocorrelation Term -- -.012 

(.013) 
-- .009 

(.009) 
-- .011 

(.014) 
       
Dropout Rate     -.037 

(.025) 
-.036 
(.025) 

.003 
(.039) 

.003 
(.039) 

.006 
(.020) 

.006 
(.020) 

       
Per Capita Welfare     .420*** 

(.090) 
    .425*** 

(.090) 
.186 

(.122) 
.190 

(.122) 
.020 

(.069) 
.019 

(.069) 
       
Unemployment Rate -.116 

(.059) 
-.113 
(.059) 

-.226** 
(.080) 

-.232** 
(.081) 

.051 
(.046) 

.050 
(.046) 

       
Per Capita Income .072 

(.140) 
.076 

(.140) 
.189 

(.191) 
.186 

(.191) 
.146 

(.107) 
.146 

(.107) 
       
Percent Male Aged 13 to 17    1.226*** 

(.339) 
    1.256*** 

(.341) 
-.712 
(.468) 

-.720 
(.476) 

.332 
(.260) 

.319 
(.261) 

       
Percent Male Aged 18 to 25 -.026 

(.296) 
-.032 
(.296) 

-.901* 
(.404) 

-.853* 
(.404) 

.003 
(.228) 

.000 
(.229) 

       
Percent Black .202 

(.292) 
.212 

(.292) 
.096 

(.402) 
.044 

(.404) 
-.223 
(.225) 

-.219 
(.225) 

       
Percent Hispanic 1.319* 

(.587) 
1.334* 
(.587) 

.119 
(.787) 

.149 
(.788) 

  1.278** 
(.441) 

  1.287** 
(.442) 

       
Percent Home Exemption -.142 

(.243) 
-.133 
(.243) 

.847* 
(.332) 

.788* 
(.340) 

.386* 
(.188) 

.398* 
(.189) 

       
Probability of Arrest    -.684*** 

(.034) 
   -.648*** 

(.034) 
.011 

(.009) 
.011 

(.009) 
   -.140*** 

(.028) 
-.141*** 

(.028) 
       
Per Capita Held -.015 

(.037) 
-.015 
(.037) 

.012 
(.053) 

.011 
(.052) 

-.037 
(.028) 

-.037 
(.028) 

       
Per Capital Law Enforcement 
Exp. 

.039 
(.104) 

.045 
(.105) 

.094 
(.413) 

.090 
(.413) 

.132 
(.080) 

.135 
(.081 

       
Constant .913 1.022 -12.324 -12.393 -3.931 -3.841 
Model F  170.87   169.54  331.86    329.89    173.99 172.52 
Adjusted R-squared .978    .978    .989    .989     .978   .978 
Note: coefficients for unit, year, and trend dummy variables are suppressed.  Standard errors are in parenthesis. 
* = p<.05 
** = p<.01 
*** = p<.001 
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Problems in the Data 
We determined that our data require that 

heterogeneity be modeled.11  Also, using the various 
tests discussed to this point, we determined that the data 
were characterized by panel heteroskedasticity, serial 
autocorrelation, spatial autocorrelation, and 
contemporaneous correlation.  The data were, however, 
stationary according to the augmented Dickey-Fuller 
test.  
 
Models 

We begin by estimating models with heterogeneity 
(controlled for with fixed effects for unit and time), unit 
specific trends (controlled for with unit-specific trend 
variables coded from 1 to t for each I), panel 
heteroskedasticity (weighted by square root of 
population), and serial autocorrelation (controlled for 
with a lagged dependent variable).  These models will 
hereafter be referred to as the “baseline models.”  The 
baseline model is as follows: 
 

t =yit = dyi,t -1 + xitß + vi + ?t + vt + eit;   
 i = 1,…, N;   1,…,T                (8) 

 
Equation (4) is identical to equation (2) with the 
exceptions of dyi,t -1 and vt.  The former denotes the 
lagged dependent variable, and the latter denotes unit-
specific trends.  Panel heteroskedasticity is modeled by 
multiplying the independent and dependent variables by 
the square root of population. 

We then turn our attention to the less familiar 
estimation issues introduced above, namely spatial 
autocorrelation and contemporaneous correlation, 
estimating the following alternative models: (1) baseline 
models with a spatial autocorrelation term (coded as the 
mean value of the dependent variable for contiguous 
units in the same year) and (2) baseline models with 
panel corrected standard errors (for contemporaneous 
correlation).  In all we estimate twelve models, three 
each (assault, robbery, and burglary) for the baseline 
and each of the aforementioned extensions of the 
baseline models.  Given these various models we then 
compare the patterns of statistical significance/non-
significance, as well as the magnitudes of the 
relationships across successive model specifications.  In 
short, we are exploring the degree to which the 
substantive interpretation of certain empirical 
relationships may change as the estimation issues 
discussed previously in this article are taken into 
account.12 

 
RESULTS 
 In Table 1 we compare the coefficients between the 
baseline models and the spatial autocorrelation models.  
The first two columns are for the assault rate, the second 

two columns are for robbery rate, and the third two 
columns are for the burglary rate.  Turning attention to 
the assault rate columns, the first presents the results 
from the baseline model and the second presents the 
results from the spatial autocorrelation model.  Columns 
three through four (robbery) and five through six 
(burglary) are to be interpreted similarly.  Table 2 is 
identical to Table 1 except that it presents the results of 
the baseline models and the panel corrected standard 
error models (for contemporaneous correlation), without 
the spatial autocorrelation terms.     

As can be seen in Table 1, controlling for a spatial 
autocorrelation term does not substantially influence 
any of the empirical relationships assessed here.  Across 
all three dependent variables, the slope estimates and 
standard errors for each of the independent variables are 
virtually identical between the baseline models and the 
models that include the spatial autocorrelation term.13 

 On the other hand, Table 2, which displays our 
comparison of the baseline models to those with panel 
corrected standard errors (PCSEs), indicates that 
adjusting for contemporaneous correlation in this 
context is quite important.  Indeed, the effect of 
contemporaneous correlation is rather complex across 
the assault, robbery, and burglary models.  In particular, 
in comparing the baseline models to the PCSE models, 
certain relationships are mediated (the lagged dependent 
variable and the percent male aged 13 to 17 in the 
assault models; percent home exemption in the robbery 
models; and the lagged dependent variable and the 
percent home exemption in the burglary models).  Other 
relationships, however, demonstrate a “suppression” 
effect (Sharpe and Roberts 1997), where the 
relationships actually got stronger as a result of 
introducing the PCSEs (percent Hispanic in the assault 
models; unemployment,14 both age distribution 
variables, and per capita law enforcement expenditures 
in the robbery models; and unemployment, per capita 
held, and per capita law enforcement expenditures in the 
burglary models). 
      
CONCLUSION 
 In this article we have raised a number of issues 
relevant to the estimation of unbiased parameter in 
TSCS research designs.  While the issues of spatial 
autocorrelation, contemporaneous correlation, and time 
trends have been discussed elsewhere, there has yet to 
be any single work that brings these discussions 
together and assesses their relevance for criminological 
research.  Accordingly, the major purpose of this article 
was to review these estimation issues and to then 
empirically examine the degree to which they may 
impact the strength and significance of a number of 
relationships commonly studied by criminologists. 
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Table 2.  Baseline models and models with panel corrected standard errors for contemporaneous correlation. 
Regressors Assault  Robbery Burglary 

 Baseline 
Model 

PCSE 
Model 

Baseline 
Model 

PCSE 
Model 

Baseline 
Model 

PCSE 
Model 

       
Lagged Dependent Variable .173*** 

(.034) 
.174* 
(.071) 

-.060 
(.039) 

-.124 
(.134) 

.098* 
(.048) 

.150 
(.103) 

       
Dropout Rate -.037 

(.025) 
-.039 

(.024) 
.003 

(.039) 
.005 

(.042) 
.006 

(.020) 
.012 

(.018) 
       
Per Capita Welfare .420*** 

(.090) 
.247*** 

(.066) 
.186 

(.122) 
.270 

(.109) 
.020 

(.069) 
-.036 

(.062) 
       
Unemployment Rate -.116 

(.059) 
-.053 

(.048) 
-.226** 

(.080) 
.277*** 

(.065) 
.051 

(.046) 
.212*** 

(.033) 
       
Per Capita Income .072 

(.140) 
.088 

(.096) 
.189 

(.191) 
.192 

(.174) 
.146 

(.107) 
.141 

(.107) 
       
Percent Male Aged 13 to 17 1.226*** 

(.339) 
.603 

(.317) 
-.712 

(.468) 
-1.217* 

(.518) 
.332 

(.260) 
-.088 

(.271) 
       
Percent Male Aged 18 to 25 -.026 

(.296) 
-.333 

(.297) 
-.901* 
(.404) 

-1.468** 
(.448) 

.003 
(.228) 

-.187 
(.233) 

       
Percent Black .020 

(.292) 
.380 

(.217) 
.096 

(.402) 
-.357 

(.366) 
-.223 

(.225) 
-.128 

(.157) 
       
Percent Hispanic 1.319* 

(.587) 
2.092** 

(.637) 
.119 

(.787) 
1.440 
(.763) 

1.278** 
(.441) 

1.757** 
(.586) 

       
Percent Home Exemption -.142 

(.243) 
-.135 

(.265) 
.847* 
(.332) 

.018 
(.380) 

.386* 
(.188) 

.308 
(.259) 

       
Probability of Arrest -.684*** 

(.034) 
-.638*** 

(.035) 
.011 

(.009) 
-.036 

(.046) 
-.140*** 

(.028) 
-.163*** 

(.034) 
       
Per Capita Held -.015 

(.037) 
-.011 

(.038) 
.012 

(.053) 
-.102 

(.053) 
-.037 

(.028) 
-.076** 

(.025) 
       
Per Capital Law Enforcement Exp. .039 

(.104) 
.139 

(.104) 
.094 

(.413) 
.248* 
(.118) 

.132 
(.080) 

.248** 
(.075) 

       
Constant .913 .609 -12.324 -16.502 -3.931 -5.245 
Model F 170.87 -- 331.86 -- 173.99 -- 
Adjusted R-squared .978 .999 .989 .999 .978 .999 
Note: coefficients for unit, year, and trend dummy variables are suppressed.  Standard errors are in parenthesis.  Also, 
STATA does not report model F statistics for PCSE models. 
* = p<.05 
** = p<.01 
*** = p<.001 
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Given the analyses presented here, three major 
conclusions can be reached.  First, an absence of 
controls for spatial autocorrelation did not substantially 
affect any of the relationships examined in this study.  
This does not mean that spatial autocorrelation has no 
relevance in TSCS designs; rather, in the present 
context (a county-level analysis in California) models 
with and without a spatial autocorrelation term were 
virtually identical.  Second, of the three dependent 
variables included here, assaults appear to be the least 
sensitive to the estimation issues discussed above.  This 
may indicate that “instrumental” offenses (burglary and 
robbery) may be more susceptible to the biases 
associated with contemporaneous correlation than 
assaults. 
   Finally, contemporaneous correlation “matters” in 
the present context.  Although the pattern of impact was 
complex (both mediating and suppression effects were 
revealed), the broader implication is that 
contemporaneous correlation issues significantly 
influenced multiple empirical relationships routinely 
assessed by criminologists.  Why does this matter?  The 
standard approach of only using dummy variables for 
each time period in time-series—cross-section analysis 
assumes that the correlation between each unit of 
observation is the same across all units.  For example, 
dummy variables for each time period force a downturn 
in the economy to have the same effect on all counties 
at the same time.  The panel corrected standard errors 
approach we used here (that controls for 
contemporaneous correlation) allows this correlation to 
vary, which permits more accurate coefficient estimates 
when all is said and done.  Again, while we are at a loss 
to explain the changes in the coefficients (because of 
inadequate theory development in this area), 
contemporaneous correlation appears to be worthy of 
consideration for criminologists.  

In all, the work presented here highlights the 
importance of testing for whether the estimation 
issues/problems discussed throughout the paper are 
present.  If so, correcting them to avoid errors in 
estimation is necessary to avoid errors in interpretation 
as to which factors are, or are not, related to crime. 
 
NOTES 
1 There is a wide array of techniques for the analysis of 
panel and TSCS data (e.g., Baltagi, 1995; Greene, 1993; 
Hsiao, 1986; Beck and Katz, 1995).  There are special 
techniques for qualitative as opposed to quantitative 
dependent variables.  Also, there are dynamic panel 
models for lagged dependent variables.  Furthermore, 
depending on the expected “error structure,” one choose 
from a large list of techniques designed to detect error 
correlations between and within individual units of 
observation.  
 

2 An alternative definition of heterogeneity is diversity 
within a context, in this case each county.  However, 
this diversity is expected to remain constant over time 
periods. 
 
3 It is important to point out that the coefficients for the 
dummy variables for unit and time are practically 
uninterpretable.  A significant coefficient on a single 
unit-specific dummy variable provides little information 
other than an indication that some unobserved (perhaps 
unknowable) time -stable feature of the unit exists.  As 
such, the coefficients on unit-specific and time-specific 
dummy variables are nearly always suppressed.  We 
follow this approach in the analysis section of this 
paper. 
 
4 Panel heteroskedasticity, compared to ordinary 
heteroskedasticity, allows the error variances to vary 
from unit to unit while requiring that they be constant 
within each unit. 
 
5 One possible technique would be to conduct a 
likelihood ratio test comparing the restricted and non-
restricted models. 
 
6 One issue that we do not devote attention to in the 
present context is the assumption of constant 
coefficients across time periods.  Stated simply, TSCS 
models require constant coefficients across time and 
space.  Thorough discussions concerning violations of 
this assumption as well as methods for dealing with it 
can be found in Pesaran et al. (1999), Pesaran and Smith 
(1995), and Robertson and Symons (1992). 
 
7 A similar statistic is Geary’s C.  Moran’s I is based on 
cross products to measure value association.  Geary’s C 
employs squared difference.  We opt for Moran’s I 
merely because it is the more popular of the two. 
 
8 The actual derivation of PCSEs is rather complicated.  
Readers are advised to consult the appendix in Beck and 
Katz (1996) for a complete explanation. 
 
9 Although this approach has been labeled by Beck and 
Katz (1996) as being “modern,” the same point was 
made two decades ago by Kessler and Greenberg (1981) 
in their discussion of panel analysis. 
 
10 Three variables were fairly collinear:  (1) the welfare 
rate; (2) the unemployment rate; and (3) per capita 
income.  Each was correlated with the other at 
approximately .60; however, tolerance estimates 
consistently fell above .30, which led us to conclude 
that multicollinearity was not a problem.   
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11 The test used for determining whether heterogeneity 
is present is with an F-test.  The null for this test is that 
the coefficients for all the unit-specific dummies equals 
zero.  The null was rejected in all of our models. 
 
12 Although a number of empirical tests for the equality 
of coefficients across regression models exist (see, e.g., 
Brame et al., 1998; Clogg et al., 1995), given the large 
sample in the present case the pooled standard errors for 
each of the coefficient comparisons rarely exceeded 
zero (most often beyond five decimal places), making 
even small differences between coefficients statistically 
significant (yet perhaps substantively unimportant).  
Thus, we opt for visual inspections of the changes in 
coefficients and, since our standard errors are included 
in the tables, the reader should be able to calculate 
equality of coefficients estimates if necessary. 
 
13 A possible explanation for this finding is that spatial 
autocorrelation is only detectable with lower-level units 
of analysis (e.g., Census blocks).  We thank a reviewer 
for pointing this out. 
 
14 It appears as though the unemployment rate does a 
“bounce” across the robbery and burglary models.  This 
may often be treated as an indicator of multicollinearity 
(Hanushek and Jackson, 1977).  Diagnostic procedures 
(tolerance levels and condition indexes), however, did 
not reveal the presence of multicollinearity in these 
models or in those presented in either Table 1 or Table 
2. 
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